
GAM 695 Research II

Image Effects with Compute Shaders

GDImageProcessor

By: Kerwin Ghigliotty Rivera

DepaulID: 1938268

Initial Thoughts

My initial idea was to get some more exposure to compute shaders, the idea was to create an

application in which I could use compute shaders to apply different effects to an image, be it bloom,

edge detection, invert or other effects.

Taking advantage of the ability to define a x, y, z grid and

the fact that a texture is x wide and y tall we can simply

set glDispatchCompute (textureWidth, textureHeight, 0)

that way for each effect we have a compute shader that is

handling a specific pixel.

Prototype Design

Initial concept Concept Prototype v0.1

The user should be able to load an

image file by clicking the Open

button.

Once it is loaded the Base image

should be populated with the image

data and some Metadata should be

available for the user in the Info

section.

The user should be able to select the

effects they would like to apply to

the base image.

Prototype v0.1

The main concern in my implementation is how to render 3 different viewports on screen

In prototype v0.1 there is a top layer viewport for UI elements, in which the Text “Demo created by Rein

– This message is displayed in engine using a custom sprite renderer” is kept.

The Nuklear UI is drawn on top of this viewport

As in the example above I managed to implement a batch system to just draw what elements I design

with a particular ID, in this case UI elements are set to 0

And the order of operations is as follows

Get the UI Camera

Set its viewport into context

Draw elements in batch 0

By setting the view state we are simply calling the viewport by its preset coordinates as well as enabling

a Scissor test.

Now if we do these for all 3 viewports, we get this

And the result of this grants us 3 viewports

One for the UI, one for Base Image and one for Processed Image

Now we can proceed with the next step which is to render the full image loaded on its viewport and

then process it.

Compute Shader
With this out of the way I started working on my basic compute shader (bloom effect for now)

(Some snippets from RenderDoc)

Here I am specifying my input and output image values (this will be common for all the shaders used)

As for the bloom effect, I am using the method described in this article which was extremely useful in

understanding how blur is applied: Efficient Gaussian blur with linear sampling

I have my offset and weights set

This is the way the weights are being used (numbers indicate indices)

The closer to the center the bigger the weight value will be, that means

more color will be considered for that pixel, the farther from the center

the less color is considered.

I am retrieving the current pixel using gl_GlobalInvocationID.xy to get the current position as it is a

1x1x1 layout and imageLoad to get the information then I apply the base weight to the center pixel.

I am performing a loop for both the Vertical and Horizontal bloom and then I am applying the color to

the output image using imageStore

https://www.rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/

Using this shader, I can see the results immediately for a 738x576 image file

Input Output

Current problem (Solved below)

Earlier I mentioned that this was my input and output images

Currently for binding 0 which is the input I am specifying that the image is in rgba8 format, but that can

change depending on what is the input image.

Solution

By changing the layout for the input image to be a sampler2D instead of a image2D I am able to get

away with not specifying the input format

This enables me to use any image as input and the output will be set to rgba32f

Granted some adjustments were needed aside from that, instead of calling imageLoad I had to now call

texelFetch to get the specific pixel I needed.

Results of Bloom

With this step completed the next step was to work on the edge detection as well as the invert effect

Edge Detection

For this shader I consulted a really good programming cookbook

OpenGL 4 Shading Language Cookbook - Third Edition by David Wolff

Chapter 6 of this book goes step by step into creating a basic Edge Detection compute shader, with the

basics of my implementation already done I used this shader and it worked surprisingly well.

https://learning.oreilly.com/library/view/opengl-4-shading/9781789342253

Invert

The invert compute shader was very straightforward

And the result is this

Export to TGA
The next big step was to export the texture into TGA format

My idea was to take the texture id of the new image and use glGetTexImage to retrieve the data and

store it in a file. I used my SaveFile method created for my GDConverter project to select the folder I

wanted to save to and depending on the choice the user selected I would append the effect name to the

file. This worked well, but the real problem was handling the data itself. I started by binding the texture I

was about to retrieve, then creating a buffer to store the data I needed. After performing glGetTexImage

I would get the data into the buffer, so far so good.

The next step was to create a header for the TGA format.

I found a basic TGA header and tried it.

I used my custom File Library and wrote the Header and the Databuffer into file

Result

There is a major problem here, and it is that my output image is flipped, the reason for this is because

while OpenGL’s coordinate systems starts with its origin (0,0) being bottom left, TGA (and a lot of other

systems) use top left as the origin it was only after reading the TGA format specification doc that I

managed to figure out that to flip it, I needed to specify the image descriptor byte to suit this

requirement.

http://www.paulbourke.net/dataformats/tga/

I then decided to create my own TGAHeader struct to handle this

With this done I tested and still had some issues, and I found that the ColorMapOrigin while it says in

the document that it should be 2 bytes it was not working until I set it to be one byte, still looking into

why this gave me issues.

And now my export WriteToTGA function looks like this

The result of the Export Function

Post-Mortem

Had I more time with this project, I would try to implement Canny Edge Detection instead of

regular Edge Detection. Also working with UI frameworks made me start writing up my own wrapper

classes to make it easier to implement features into the UI (like sliders to set location of elements, etc…)

I enjoyed working with this project, mostly because I wanted to use compute shaders for something

other than skinning models, I think compute shaders are very powerful specially with how efficient new

GPUs have been.

I’m grateful to have learned so much during this and for having such supportive advisors and

colleagues. My next steps would be to redo my engine from scratch and try to simplify UI and Tool

creations and maybe take a break for a bit after working so hard on my master’s degree.

