
GAM 695 Research

Tool Development with UI for C++

Azul Converter

By: Kerwin Ghigliotty Rivera

DepaulID: 1938268

Prototype Design

Initial prototype design was straight forward Concept of Prototype V0.1

Load a GLB File into the application using Open

Dialog (before we were just using command line

inputs which can be messy when there are

options added)

The 3D model would be shown on screen and a

few fields would populate.

The metadata section would show the number

of verts and triangles in the mesh (or total

meshes)

The Data section would fill with the information

regarding all of the vbos currently enabled in

the model (Position, Normal, Index, Color,

Texture, UV)

The user would then be able to directly affect the enabled property of each vbo and have it kept or

removed from the model at the time of export.

Concept was created using DearImGUI and at the moment it called for a few other changes

Prototype V0.1 created using Dear ImGUI using dummy data

Some data from the GLB file was unnecessary, like GLB header checks and so those were removed.

Additionally, a Bounding Sphere section was added, the idea would be that the user could see the

bounding sphere and modify the number of slices in the bounding sphere, reducing its cost to generate

at the cost of lower accuracy.

The Bounding Sphere properties would also be shown in the Metadata section at all times.

And with that along with some other engine changes prototype V0.2 concept was created.

Prototype V0.2 created in both Dear ImGUI and Nuklear

UI Libraries for C++

Dear IMGUI

Link: https://github.com/ocornut/imgui

Developed and maintained by Github user ocornut (Omar Cornut) and a lot more other users, licensed

under the MIT License

Bloat-Free graphical user interface library for C++. Renders Vertex Buffers that we can implement into

our 3D engine, this requires a back end to interact with the elements. It is designed to be used for tool

development (not for average end-user consumption). Used and supported by many big game studios.

This is done in an Immediate Rendering paradigm which basically means that a line of code is translated

directly into a feature of the GUI

For example, the code on the right creates a

menu drop down with “Open GLB File” and

“Save” buttons.

Every time this code is read the menu is

created on screen, meaning that for this menu

to persist on the GUI interface it needs to be

executed in a loop.

This allows for fast development, but

potentially costly if done poorly.

Prototype V0.2 Created in Dear ImGUI

https://github.com/ocornut/imgui

PROS

Setting it up was super simple, after importing the main files and the appropriate renderer file creating

UI elements was very easy.

A lot of functionality already developed makes it easy to just pick from an example and replicate

A lot more support compared to Nuklear, with ImGUI having 5940 forks with 973 watchers at the time of

this documentation

CONS

The framework conflicts with our Memory Tracker due to it redefining placement new, turning Memory

Tracker off makes this work.

Need to be very aware of how the GUI is implemented, creating a window frame without closing is

costly but this is a problem with all immediate rendering libraries.

Nuklear

Link: https://github.com/Immediate-Mode-UI/Nuklear

Developed by Micha Mettke (vurtun on GitHub) as well as a 129+ contributors on GitHub

“It is a minimal-state, immediate-mode graphical user interface toolkit written in ANSI C and licensed

under public domain. It is designed as a simple embeddable user interface for applications and does not

have any dependencies, a default render backend or OS window/input handling but instead provides a

highly modular, library-based approach with simple input state for input and draw commands describing

primitive shapes as output. So instead of providing a layered library that tries to abstract over a number

of platform and render backends, it focuses only on the actual UI.” – Taken from their GitHub project

Readme.md

Uses the same Immediate paradigm as DearImGui but this time it only uses a single header file with

some support files.

Prototyping the Azul Converter on Nuklear at first was a bit of a problem, there is less functionality out

of the box in Nuklear as opposed to DearImGUI

ImGUI has a lot of already established functionality whereas in Nuklear a lot of functionality that you

want you have to dig up and modify yourself (Transparency on the bottom right window is an example

of this). Which gives you a sense of ownership when you crack it and make it work.

https://github.com/Immediate-Mode-UI/Nuklear

Prototype V0.3 Created in Nuklear

Wireframe toggle test on Prototype V0.3 with Nuklear

Pros

Simple setup since its only one file + supporting files you may need + renderer file

Some demos show functionality you can plug and play easily

Cons

Conflicts with our memory tracker since it is also redefining placement new, turning Memory Tracker off

makes this work.

Commits to Nuklear are less often than DearImGUI as Nuklear has less support (1111 forks with 567

watchers).

A lot of functionality you must dig through code and reverse engineer as no real examples are given.

Author does not have time to keep updating it since it is open source, and it is not his priority.

Results from Final Prototype

Using the latest version of my tool I am able to strip off the UV, Normal and Texture vbos and
these are my results (for the “wooden crate.glb” file)

The ratio is consistent since from 3 -> 12 slice it is only a 12KB ish increase in size and from 12 ->
24 is a 40KB ish increase in size

Minus the data from Texture, Normal and UV VBOS 4110KB (bounding sphere makes up for the
extra KB in the 3 and 12 slice variants)

Here are the models working in my engine from last quarter

Top are Models with 3 Slice Bounding Sphere with and without Texture, Normal and UV
information

Middle are Models with 12 Slice Bounding Sphere with and without Texture, Normal and UV
information

Bottom are Models with 24 Slice Bounding Sphere with and without Texture, Normal and UV
information

